Chart:
Projecttitle:
Improve the timeliness of environmental data and indicators, and their use for policy advice
Project description:
One of the main tasks of the Federal Environment Agency is to provide data on the environment. They provide information on environmental pollution and environmental status in Germany and are an important tool for policy advice, as they provide information on the need for action or success. Because of the complexity of the system linkages, there are often extensive calculation methods behind the indicators. The up-to-dateness of the data is decisive - also for public perception. Against this background, the project aims to improve the timeliness of central environmental data and environmental indicators. For this purpose, estimation methods are developed and applied for selected quantities.
Duration:
2017
2018
Details
Chart:
Projecttitle:
Socio-economic scenarios as basis for vulnerability analysis for Germany
Project description:

Vulnerability to the effects of climate change has been assessed in a cross-sectoral assessment for the first time for Germany in 2015. Regions and systems have been identified that are particularly exposed to climate change, i.e. which are vulnerable. Data of climate research have been mixed with sectoral and socio-economic data. An update is scheduled for 2021. GWS is developing three socio-economic scenarios as in input on behalf of the Federal Environmental Agency. Firstly, scenarios are quantified on national level with the macroeconomic model PANTA RHEI. In a next step the national modelling is transferred to the level of districts (NUTS 3). Finally, land use data and socio-economic parameters are projected until 2035.

Duration:
2017
2018
Details
Chart:
Projecttitle:
Prioritization and assessment of value-chains within the Renewable Energy Sector in Lebanon
Project description:

The project analyses renewable energy value chains in Lebanon. Based on a literature review and interviews on the ground, the most important technologies for Lebanon will be selected against the background of future viability, value for money and employment potential and a data-driven value added and employment analysis will be carried out for them.

Duration:
2017
2018
Details
Chart:
Projecttitle:
Macro economic and distributional effects of the German Energiewende
Project description:

The aim of the energy transition is to transform the energy system into a climate-friendly system and at the same time to phase out nuclear energy while guaranteeing a more secure, economic and environmentally friendly energy supply. The increase of energy efficiency and the expansion of renewable energy are essential components. While clear and measurable indicators with quantified goals and intermediate targets are defined in the energy concept for the fields of efficiency (annual increase in final energy productivity by 2.1 %), renewable energy (increase to 60 % of gross final energy consumption by 2050) and climate protection (40 % GHG reduction by 2020; at least 80 % to 95 % by 2050), this is not the case for the economic dimension. Measuring the macroeconomic effects of the energy transition therefore is much more difficult from a methodological point of view.
Against this background, a consortium consisting of the Institute of Economic Structures Research (GWS), German Institute for Economic Research (DIW), German Aerospace Center (DLR), Prognos AG and Fraunhofer Institute for Systems and Innovation Research (Fraunhofer ISI) has carried out a research project on the macroeconomic and distributional effects of the energy transition on behalf of the BMWi from July 2015 to November 2018. The project is divided into six work packages, summarized at www.bmwi.de/Redaktion/EN/Artikel/Energy/investment-growth-and-jobs.
On the basis of a brief systematization of the effects at the beginning of the project in work package (WP) 1, the concept of national energy accounts has been further developed in WP 2). On the one hand, it covers the macroeconomic costs of energy supply. On the other hand, key parameters such as investment and employment are determined for the comprehensively defined energy sector (so-called gross effects). Reduced energy imports are also assessed.
WP 3 deals with the development of a counterfactual scenario, which describes a world without energy transition for the analysis period 2000 to 2050, and a target scenario in which the goals of the Federal Government are achieved. By comparing the target scenario with the counterfactual world, the net effects of the energy transition are determined both ex post and ex ante in macroeconomic model analyses. In WP 4, the distributional effects of energy policy are further classified by their significance. Issues of personal income distribution and the regional effects of the energy transition are examined in depth. Additional advantages of the energy transition are identified alongside other work steps in WP 5. In WP 6, possible bottlenecks of the energy transition are discussed against the background of the good economic development in Germany.

Duration:
2015
2018
Details
Chart:
Projecttitle:
The Socio-Economic Impacts of Renewable Energy and Energy Efficiency in Egypt: Local, Value, Employment and Capacity Building
Project description:

The aim of the project is to develop a tool that enables the contracting entities (RCREEE) and the Egyptian stakeholders to assess employment through the expansion of renewable energies and by increasing energy efficiency. The tool is based on the Egyptian input-output table and regionalized labor coefficients for renewable energy and energy efficiency measures. Together with the Egyptian partners, strategies and quality criteria for data collection are developed. Stakeholder workshops and training events complete the project.

Duration:
2017
2017
Details
Chart:
Projecttitle:
Development of analytical tools based on Input-Output table
Project description:

The aim of the project is the development of an analytical tool to assess the gains and losses of possible state programs supporting the development of the private sector of the Tajik economy.

By using the Tajik Input-Output table and employment data, the approach allows to analyze the effects on production and employment. During an on-site workshop, the client is trained in input-output analysis. Furthermore, the tool is developed together with the participants and used for real-life problems. An user-interface facilitates the operation of the tool.

On behalf of GIZ, the project is conducted jointly by Halle Institute for Economic Research (IWH) and the Institute of Economic Structures Reserach (GWS).

Duration:
2016
2017
Details
Chart:
Projecttitle:
Comparative analysis of the competitive position of the EU automotive industry and the impact of the introduction of autonomous vehicles
Project description:

Based on an overview of current costs of manufacturing vehicles in the major global auto markets it is analyzed how major trends in each market are likely to affect these costs through time. The project is led by Ricardo AEA. Different pricing strategies and international comparativeness are analyzed to understand how well positioned the various markets are and how the EU auto industry could best position itself to take advantage of these global trends and ensure that it maintains or grows its market share in the future. The model GINFORS_E will be applied to develop different scenarios of global automotive market development until 2030 and beyond to quantify opportunities for EU manufacturers.

Duration:
2016
2017
Details
Chart:
Projecttitle:
Economic opportunities from climate protection
Project description:

In order to successfully implement climate protection in key areas, such as energy, industry, transport, households, trade / commerce / services, agriculture, forestry and waste management, a wide range of goods and services is needed. This range has grown substantially in recent years. Several studies have confirmed the German economy is highly competitive in the field of climate protection goods and technologies. Currently, the diverse opportunities resulting from climate change are overlooked in the discussion focusing mainly on costs. These opportunities include the positive impact on employment and overall economic benefits, as well as imports  reduced. The study analyses these opportunities and presents in a format open to public discussion.

Duration:
2015
2017
Details
Chart:
Projecttitle:
Socially compatible design of climate mitigation and energy transition in low-income households
Project description:

Distributional effects of climate mitigation and energy transition policies have to be analysed precisely to prevent negative impacts on low income groups and increase public acceptance. It is important to highlight benefits of the energy transition while discussing the energy price design. GWS will quantify effects of policy options developed by project partners in work package 3. The project is lead by adelphi research, Berlin. Further project partner are Green Budget Germany (FÖS) and the research center for sustainable development and climate policy.

Duration:
2015
2017
Details
Chart:
Projecttitle:
Business start-up activities in the energy sector
Project description:

Business start-up activities should be a catalyst for innovation and employment within the energy transition. The GWS together with the Renewable Energy Agency on behalf of the Hessen Agentur investigate on how the start-up activities in the energy sector have developed. Special focus is on the fields of climate protection and electric mobility in recent years. The purpose is to capture trends in the state of Hesse and to understand specific challenges and barriers to business start-ups in these particular business fields. To achieve this quantitative analysis is performed and interviews are conducted with institutions and start-ups.

Duration:
2016
2016
Details